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Letters

General Form of Green’s Function for MuM1ayer Microstrip

Line with RectangoIar Side Walls

MASANORI KOBAYASHI AND R@Ill TERAKADO

Absfracf-This letter shows the general form of Greim’s functions
for multilayer microstrip lines with rectangular side walls derived for the
eight eases classified according to the boundary conditions by taldmg
account of the reciprocity relation for Green’s function and using the
method of separation of variables

The TEM wave approximation is well known to be reasonable

in many cases when the cross-sectional dmensions of a trans-

mission line with a nonuniform medium are much smaller than

the wavelength to be used. Therefore, the calculation of charac-

teristic impedances, phase velocities, and, attenuation constants

of various transmission lines based on the TEM wave approx-

imation is useful for the design of microwave integrated-circuit

structures. These parameters often can be calculated using

Green’s functions [1 ]– [6]; however, the Green’s function

satisfying the boundary conditions must be obtained first. The

use of Green’s functions converts a dMerential equation together

with the boundary conditions to an integral equation, which in

many cases is more readily attacked by approximate techniques.

Therefore, to find the Green’s function satisfying boundary

conditions is an important problem for calculating the param-

eters by using the Green’s function. Although the general form

of Green’s functions for a multilayer microstrip line with

rectangular side walls can be easily derived by extending the

method described in [2]- [4 ], it has not been obtained in the

literature; the reason seems to be that the strip structures rarely

have more than three dielectric layers from a practical point of

view.

The purpose of this letter, from mathematical interests and

the usefulness. in programming to calculate the parameters, is to

show the general form of Green’s functions for such a line

derived by taking account of the reciprocity relation [7] and

extending the method deseribed in [3], [4], and [8, pp. 52–54].

We consider the region R in a two-dimensional space shown

in Fig. 1 for determining the Green’s function of an n-layer

microstrip line with rectangular side walls. The region R is

composed of the regions Ri5 where (i = 1,2,. . . ,n). Let the

region Rt be filled with a homogeneous dielectric of pertnittivity

ei. This problem can be classified in the eight eases according to

the boundary conditions; that is, the Dirichlet and mixed con-

ditions, as illustrated in Fig. 2, in which the solid lines on outer

boundaries indicate electric walls G = O, and the broken lines

indicate magnetic walls dG/Jv = O, where v is the external

normal to the walls. From a practical point of view, eases 3, 7,

and 8 in Fig. 2 are interesting cases: for example, case 3 was

always studied for n = 2 by Gish and Graham [2], case 7 for

n = 2 by Allen [5], and case 8 for n = 3 by Yamashita and

Atsuki [3], [4], and for n = 4 by Albrey and Gunn [6]. The

Green’s function for the eight cases can be derived by taking

aeeount of the reciprocity relation [7, eq. (14)] and extending the
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Fig. 1. Illustration for determining the Green’s function in a rectangular
region R with n-dielectric layers.
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Fig. 2. Classification of Fig. 1 based on the boundary condbions.

method deseribed in [3], [4], and [8, PP. 52–54]. For example,

the Green’s function for case 1 can be obtained by substituting

the boundary conditions at the interfaces y = dt, where (t=
1,2,..., n – 1) into the following equations, satisfying the

Poisson’s equation and the outer boundary conditions when

letting the Green’s function G(X,Y;XO,YO) at an observation

point (x,Y) in Ri due to the unit charge source at a point (xo, Yo)

in Rj denote by G(i)

G(1) = $ {+ C1,O(Y - do)

+ Z’Cl,~ SjJj,x,xo)SH~’(j, Yo) sinh YJ y – do)}

(la)

G(i) = ~ {+ Ci,o(y + Ci,o’)

+ Z’Ci,mSm(j,x,xo)SHm’(j,yo)SHm’(i, Y)},
i=z, g,. ... l—l (lb)

(MY +q,o’)
+ X’Sm(j,x,xo)SHm’(j, yo)SIW, Y),

I
dj.l < Y < YO

G(j) = & $(YO + Cj,o’)
J

+ Z’Sm(j,xo,x)SHm’(j, y) SHm(j, yo),

Yo ~ Y ~ 4 (lc)
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WC) = ; {+(YO + Cj,o’)

+ z’ck,msm(j,xo,x) sIIm’(k, y)sllm(j, yJ],

k=j+l, j+2,0.., n–l (Id)

G(n) = ~ {+(YO+ Cj,o’)
a&j

+ ~’cn,m~m(j,Xo,X)~~fm(j, yo)cosh ym(dn - y)}

(k)

where

Cos ymx Cos ymxo
sm(j,x,xo) = —

Ym(cj,m’ – Cj,m)

SHm( j, y) = sinh y~ y + CJ,~ cosh y~ y

SH~’(i, y) G sinh y,. y + Ci,~’ cosh y~ y,

i=2,3,. ..,1, l,

For example, the coefficients Ci,~(m # O) become as follows:

= ,=~, ‘t*yKfl(ey-i2e?,0,di-l,Ym)

c.a,m ,
YKI(&f_ 13&j*,09Cij-1,Ym)

i=z,s,... ,j–1. (2)

We can derive the Green’s functions for cases 2-8 similarly.

Then, the general form of Green’s functions for the eight cases

in Fig. 2 can be expressed by the following equations:

((” )G(i) = ~ a ,=~1 &t* + /l ~$o + ,=fil &,*X

)

. Am(x) Am(xo)Bm(j, yo)CJi, y)

&j*y@m(l,do) ‘

i=l,2,. ... l-l (3a)

[M+z)Ztm(+’fm(xcwm(.i, YO)G(J Y)

tj*y@~(l,dlJ) ‘

G(j) = ~ I
4-1 =Y=Yo

“0(@o+‘)’Am(xO)xM’27(j’yO)

(( )G(k) =~ a ‘fil et” + ji ~ + ‘ff 8,*X
aeo t=j m=. t=j )

. Am(xo)Am(x)Bm(k .v)Cm(-/,Yo)
9

‘j* YmDm(lYdO)

k=j+l, j+2,...,n (3c)

where 6* = relative dielectric COnstant.

a) Form#O

Z=~or~, ym. For ‘=
z

(4)
m=l,2,3 m=l,3,5 a

BJi, y) ~ iWK1(&i*,&?+ l,di, Y, Yin),

i=j, j+l,. ... n (6)

C~(i, y) = YK2(ef_ ~,el*, y,dt _ ~,ym),

i = l,l!, -..,j (7)

Dm(l,do) =
(

ikfKl(&l*,e2*, dl,do,yJ

MK2(el*,t2*,dl, do,yJ
(8)

~ ~i* cosh ym(di _ di - l)MK1(tl?+ 1,t$+2, di+ 1, ~,ymd )

+ e?+~ sinh ym(di — di – 1)MK2($+ 1,&z*+z, di + ~,di,yJ,

i=l,2,. ... l-l (9)

MK2(ti*,~f+ I,di,di _ l,y~)

d. d’. )E Ei* sinh ym(di — di– l) MKI(&f+ l, E?+z, ,+ I, L,Ym

+ e:+ ~ cosh ym(dt _ di - 1)MK2(&f+ 1,&f+ 2,di+ l,di,yJ,

i=l,2,. -., l–l (10)

YK1(ei*,&~+ ~,di+l,di,ym)

*old. )s .Si* cosh ym(di+ 1 — di) YK1(&f-l,&i , i, t- ljYm

+ et+ 1 sinh Ym(di + ~ — di) YK2(&f_ 1>&i*, di, di - 1,ym)$

i=l,2,. ... l–l (11)

YK2(z~,#+ ,,di+ ,,di,ym)

d di _ ~,ym)s &t* smh Ym(di+ ~ — dt)YKl(&f– ~,&i*, i,

+ &~+1 cosh y~(di+ 1 — dJYK2(&7- l,&i*, di, di - l,Ym),

i=l,2,. ... l–l (12)

MK1(en*,e:+ I,d.,d;– I,ym)

= cosh y~(dn – dn_ ~) or sinh y~(dn – dn_ ~) (13)

MK2(eR*,e;+ 1,dn,d._ l,y~)

= sinh ym(dn – d“– J or cosh ym(dn – d.– ~) (14)

YKl(eo*,el*,dl, do,yJ

= cosh ym(dl – do) or sinh ym(dl – do) (15)

YK2(eo*,el*,dl, do,yJ

- sinh ym(dl - do) or cosh ym(dl – do). (16)

b) Form=O

yo=l /lo(x) = 1 (17)

a=~=~=O forcases 2,3, 5,6, 7,and8 (18)

a=() B=g=l Bo(i, y) = 1 Do(l,do) = 1

Co(i, y) =
&j* YK4(ef_ ~,&i*, y,dt _ J

,

2 fi &t*
t=l

i = 1,2, . . .,n for case 1 (19)

a=~=l ~=() Bo(i, y) E MK3(&f*,&f+ ~,di, Y)

Do(l,do) = MKJ&l*,e2*,d1, do),

Co(i, y) = YK4(.$- 1,:1*, y,df - 1)/2,

AJx) = sin yr.x or cos y~x (5) i = 1,2,. . . ,n for case 4 (20)
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TABLE I
SELECTIONSOF smmoLs (m # O) FOR EIGHT CASSSIN FIG. 2

Symbol Case 1 Case 2 CaSe3 Caseu case 5 Case 6 Case 7 Case 8

z z’ E
., z

. .
z’ 2’ E’ z

,.
r,’

-Ym m~/a inn/2a mT/2a inn/a mr/a inn/a mu/2a inn/a

A cos sin
m

sin cos sin sin sin sin

Dm MK1 MK2 MK1 MK1 MK2 “MK1 MK1 MK1

NK1(n) cosh cosh cosh sinh cosh cosh sinh sinh

MK2(n) sinh sinh sinh cosh sinh sinh cosh cosh

YK1(l) cosh sinh cosh cosh sinh cosh cosh cosh

YK. (1) sinh cosh sinh sinh cosh s inh sinh sinh

.
z’= z ; 2-’= ‘z ; MK(n) ~ MK(c:, s:+l, d”, dn-l, Yin);

~=1 ,2,3 111 =1,3,5

lkfK3(et*,&f+ i$di,di_l)

= e,*iwKJ&;+l,e;+ z,d,~l,di)

+ 8:+ i(di - dt_ i)ikfKJEf+ ~,cf+z),

i=l,2,. ... ii-l (21)

MK4,(&j,*,&~+ ~)

)= e,~~i MK4(e~~ i ,e~q ~ ,

i=l,2,. ... rl-l (22)

YK3(&i*,&f+ ~)

= El* YKJc:_ ~,ei*),

i=l,2,. ... l-l (23)

YK4(ei*,ef+ ~,dt+ ~,d,)

~ &i*(di+ i – di) YK3(.$- I,&i*)

+ e~+l YK@_l,e:,di,dt_J,

i=l,2,. -.,1–1 (24)

MKJen*,e:+l,dn, dn-l) = d. – d.-, fv.fK4(&.*,&:+ J = 1

(25)

YK3(&o*,el*) = 1 YK4(eo*,ei*,dl,do) = dl – do (26)

where, the symbols which have two definitions for m # O; that

is, Z and y~ in (4), Am in (5), Dm in (8), iMK1(&m*,#+ ~,dn,d.– i,yJ

J in (14), YKl(eo*,el*,dl,do,yJin (13), MK2(sn*,&~+ ~,dn,dn_ ~,Y

in (15), and YKJ&o*,&l *,dl ,do,yJ in (16) are selected for the

eight cases as shown in Table I, respectively.

Using this general form, we can derive the Green’s functions

shown by Gish and Graham [2] and by Yamaahita and Atsuki

[3], [4].

Furthermore, we can easily show that these Green’s functions

satisfy the following reciprocity relation:

G(xi,Yt ;XJY.j) = c(~j,yj;~i,yi). (27)

The approximate Green’s function for a case of open microstrip

line can be derived from the Green’s function for case 1 by

letting both MKl(rs) and MKJrs) for case 1 in Table I be

exp (– y~dH_ J and letting the sideward dimension a be large.

Then, although the parameters for such a case can be obtained

by the variational technique [2]– [4] using that Green’s func-

tion, there is the undesirable property that the infinite series

converge slowly when the sideward dimension is large.
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Comments on “Design Equations for an Iaterdigitated

Directional Coupler”

JOSEPH A. MOSKO

In the above short paper,l Ou derived some design equations

for interdigital couplers. The purpose of this letter is to point

out a limitation which may not be apparent upon reading the

above work.

Because of Ou’s simplifying assumptions, his method is not

as accurate as he indicates. Let’s consider the very popular

– 3-dB coupler example he selected. Turning to carefully

plotted Bryant & Weiss data by Chambers [1, fig. 2], one can

see that although S/H agree quite well, there is an obvious

30-percent disagreement in the W/H values of theory versus

experiment [2], [3], (Actually, Lange’s data are ;ery impressive

-especially because he was announcing a new structure whose

dimensions were intuitively and experimentally derived.)

Perhaps some will think that this letter is nit-picking. How-

ever, it can be shown by more rigorous theory than Ou used

that “significant” strip-width errors can lead to couplers with

poor isolation. Because the sources for poor isolation are many

(uneven mode velocities in coupled microstrips, tolerances, con-

nectors, wire bonds, etc.), the contributions of a linewidth error

may not be obvious. If the primary error of the approximate

method were in gap width, this letter would not be necessary

because an error in coupling would be more apparent and the

b is obvious.
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Correction to “Analysis of Microstrip-Like Transmission

Lines by Nonuniform Dkcretization of Integral Equations”

EIKICHI YAMASHITA

In the above paper,l on page 195, the last line of the

Abstract, and on page 198, line 4 of Section V, the abbrevi-

ation LSM was erroneously said to represent “linear synchro-

nous motor.” The correct meaning is “longitudinal-section

magnetic modes.”
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