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General Form of Green’s Function for Multilayer Microstrip
Line with Rectangular Side Walls

MASANORI KOBAYASHI anp RYOITI TERAKADO

Abstract—This letter shows the general form of Green’s fuanctions
for multilayer microstrip lines with rectangular side walls derived for the
eight cases classified according to the boundary conditions by taking
account of the reciprocity relation for Green’s function and using the
method of separation of variables.

The TEM wave approximation is well known to be reasonable
in many cases when the cross-sectional dimensions of a trans-
mission line with a nonuniform medium are much smaller than
the wavelength to be used. Therefore, the calculation of charac-
teristic impedances, phase velocities, and attenuation constants
of various transmission lines based on the TEM wave approx-

imation is useful for the design of microwave integrated-circuit
" structures. These parameters often can be calculated using
Green’s functions [1]-[6]; however, the Green’s function
satisfying the boundary conditions must be obtained first. The
use of Green’s functions converts a differential equation together
with the boundary conditions to an integral equation, which in
many cases is more readily attacked by approximate techniques.
Therefore, to find the Green’s function satisfying boundary
conditions is an important problem for calculating the param-
eters by using the Green’s function. Although the general form
of Green’s functions for a multilayer microstrip line with
rectangular side walls can be easily derived by extending the
method described in [2]-[4], it has not been obtained in the
literature; the reason seems to be that the strip structures rarely
have more than three dielectric layers from a practical point of
view. :

The purpose of this letter, from mathematical interests and
the usefulness in programming to calculate the parameters, is to
show the general form of Green’s functions for such a line
derived by taking account of the reciprocity relation [7] and
extending the method described in [3], [4], and [8, pp. 52-54].

We consider the region R in a two-dimensional space shown
in Fig. 1 for determining the Green’s function of an n-layer
microstrip line with rectangular side walls. The region R is
composed of the regions R;, where (i = 1,2,---,n). Let the
region R, be filled with a homogeneous dielectric of permittivity
&;.. This problem can be classified in the eight cases according to
the boundary conditions; that is, the Dirichlet and mixed con-
ditions, as illustrated in Fig. 2, in which the solid lines on outer
boundaries indicate electric walls G = 0, and the broken lines
indicate magnetic walls 0G/dv = 0, where v is the external
normal to the walls. From a practical point of view, cases 3, 7,
and 8 in Fig. 2 are interesting cases: for example, case 3 was
always studied for n = 2 by Gish and Graham [2], case 7 for
n = 2 by Allen [5], and case 8 for » = 3 by Yamashita and
Atsuki [3], [4], and for n = 4 by Albrey and Gunn [6]. The
Green’s function for the eight cases can be derived by taking
account of the reciprocity relation [7, eq. (14)] and extending the
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Fig. 1. Tllustration for determining the Green’s function in a rectangular

region R with n-dielectric layers.
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Fig. 2. Classification of Fig. 1 based on the boundary conditions.

method described in [3], [4], and [8, pp. 52-54]. For example,
the Green’s function for case 1 can be obtained by substituting
the boundary conditions at the interfaces y = d,, where (¢ =
1,2,---,n — 1) into the following equations, satisfying the
Poisson’s equation and the outer boundary conditions when
letting the Green’s function G(x,y;x,¥,) at an observation
point (x,») in R; due to the unit charge source at a point (x¢,o)
in R; denote by G(i)

GUl) = 2 BCro(y ~ do)
081'

+ Z'Cy,m Su(fo%:x0)SHy'(7,¥0) sinh y,(y — dp)}
(1a)

G(i) = 2 (3Cio(y + Cio)
aaj

+ z,C‘i,mSm(jsxer)SIJm,(ja yO)SHm,(i’y)}s
i=2,3""’j_1 (lb)

Iy + Cio)
+ Z'Su(J%,%0)SHy' (7, y0)SHuli, 1)
., 2 dicy <y =<y
G = “ j—1 0
D = 2o V400 + Co)
-+ E,Sm(j’xo,x)SHm’(j1y)SHm(j3 yO)’
Yo <= y=d; (o)
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Gk) = 2 3(yo + Cr0)
aﬁj

+ Z'CrmSm(jsX0sX)S Hy (ks VIS Hu( 7, ¥0) },
k=j+1L,j+2-,n—-1 (1d)
2
G(n) = — (¥ + Cj,0)
ag;

J

+ 2:'Cn,m'svm(j:rxo’x)S}Im(js yO) cosh 7m(dn - y)}

(le)
where
o0
mn
Y = s VY = —
m=1,2,3 a
. COS YpX COS P,y X
Sm(]9x9x0) = 7m______71m_£

ym(cj.ml - C.I.m)
SH,(j,y) = sinh y,,y + C;,, cosh y,, ¥
SH,'(i,y) = sinh y,,y + C;,, cosh y,¥,
i=2,3-,n-1,

For examplé, the coefficients C; ,,(m # 0) become as follows:

J
1__[ 8t* YK]{ (E?— 1 ,81'* ’0: di— lyym)

= t=i¥1

YKI(E;—I’sj*’Oydj—laym)
i=2’39"',j—1' (2)

i,m s

We can derive the Green’s functions for cases 2-8 similarly.
Then, the general form of Green’s functions for the eight cases
in Fig. 2 can be expressed by the following equations:

N 2 J N 0 J *
G = ™~ {'(ar=111 s,: + B) mgo + t=111 & Z}

. Am(x)An(%6) Bu(Js ¥0) Culi> )
ej*ymDm(lst)

k4

i=12--+,5—-1 (3a)

é i + z Am(x)Am(xO)Bm(jsyO)Cm(ja y)
m=0 8j*ymDm(l’dO) ’
6() = = 1 =y =20
o ¢ i + 3| An*0)An(X)Bnl}, ) Cnlis Yo)
= &;*VmDn(1,do) ’
j = 192""9na Yo = y = dj (3b)
2 k—1 4] k—1
G(k) = — {(oz Il &* + ﬁ) Y +J1 a,*z}
asg, =] m=0 i=j

. An(X6)A(3) Bk, ) Cin(J, o)
8j*)’mDm(1 ,'do)

k=j+1,j+2""’n (30)

’

where ¢* = relative dielectric constant.

a) Form # 0
Q Q mn mn
= or , =—— o — (4
m=12,2,3 m=12,3 5 Vm a 2a “)

A, (X) = sin y,,x O COS P,pX (5
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B,(i,y) = MK, (e/" &l 1,41, ¥,7m),
i=jj+ 1,---,n (6)
Cu(i,p) = YKz(Gf-nGi*:y:dt—n?m),
i=12---,7 (D

MK, (¢,%,8,%,dy,do, )

®
MK2(81 *382*’d1 ’d097m)

Du(l,dg) = {

- MKl(gi*’gi*-l- 1 ’di’di— I’ym)

di—1)MK1(8?+1:£?+2,di+l’disym)
di—l)MK2(8?+198f+2’di+15di,7m)s
i=1,2,---,n—~1 (9

= g* cosh y,(d; —

+ &1 sinh y,(d; —

MKy (6" &' 1,1,0;— 1,Ym)

di - OMEK (671 15674 2501 4 1,15 Vm)

+ &1 cosh yu(dy — di_ IMEKy(efs 1,85 2,G14 1,0:7m)s
i=1,2--,n—1 (10)

= &* sinh y,(d; —

YKI(Bi*sgi*+1,di+lsdi9ym)

& cosh pu(diyy — d)YK (el 1.6",disdi 1,Vm)

+ ey sinh pu(diyy — d)YK(ef 1,6, diydi— 1,7m)s
i=12---,n-1 (11)

YKZ(gi*’8?+1’di+1:di’7m)
= &" sinh y,(diy; — d)YKi(ef 1.8, dindi_ 1,7m)
+ &1 cosh y(diy 1 — YK (el 1.8 dsd;_ 1,7m),
i=12,---,n -1 (12)
MK, (2" &1y 138Gy 15Vm)

= cosh y,(d, — d,_,) or sinh y,(d, — d,_;) (13)
MK, (6™ 804 1%y Gn— 1,Vm)
= sinh y,(d, — d,_,) or cosh y,(d, — d,_) (14)
YKy (20™,81",d1,dosVm)
= cosh y,(d; — dp) or sinh y,(d; — dy) (15)
| YK, (e0*,61%,d1,dosm)
= sinh y,(d; — dy) or cosh y,(d; — dy). (16)
b) Form =0
Yo =1 Ao(x) =1 an
a=p8=¢ =0forcases 2,3,5,6,7 and 8 (18)
o =0 B=¢&=1 Byt ) =1 Dy(1,dy) = 1
Coli,y) = gj*YK‘t(sf—il:ai*yyydi—l)’
211 &*
=1
i=12,---,nforcase 1 (19)
a=¢=1 f=0  By(i,y) = MK3(e 64 1.4:, %)

Dy(1,dy) = MK3(81*382*’d1ad0)’
Co(i;Y) = YK4(8?—1’81*’y9di—1)/2,

i=12,---,nforcase4 (20)
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TABLE 1
SELECTIONS OF SYMBOLS (7 # 0) FOR EIGHT CASES IN FIG. 2
Symbol Case 1 Case 2 Case3 Casel Case 5 Case 6 Case 7 Case 8
z - £ £ L e - L e
A mn/a mr/2a mr/2a mw/a  mn/a mn/a mE/2a mn/a
Am cos sin sin cos sin sin sin sin
D, MK, MK, MK, MK, MK, MK, MK, MK,
MKl(n) cosh cosh cosh sinh cosh cosh sinh sinh
MKg(n) sinh sinh sinh cosh sinh sinh cosh cosh
YKl(l) cosh sinh cosh cosh sinh cosh cosh cosh
YK2(1) .sinh cosh sinh sinh cosh sinh sinh sinh
£ Em=1§2,3 B Z”Em=1§3,5 s MK(n) EMK(&K’E§+lfdn’dn-l’Ym);

yr(1) = YK(eg,aiﬁ,dl,do,Ym) .

MKs(e;* 81y 1,411 1)
= gi*MK3(8f+1’8?+2’di+l’di)
+ & 1(dr — dio IMEK (e 1,674 2),
i=12,--+,n

1 (2D
MK4(8i*’8;k+ 1)

- ¥ * %
= &3 1 MK (874 15814 2)»

i=1,2,--,n—1 (22)
YKS(si*:s?+1)

8i* YKs(«"‘? - 1,8i*),
i=1,2,---,n -1 (23)

I

YK(e* 685 15014 1.91)
= &"(dyy1 — d)YKs(e- 1,8")
+ 3i*+ 1 YK (e 1a8i*adi3di- 1)
i=1,2---,n—1 (29
MK3(8,1*,8:+ l’dmdn—l) = dn - dn—l MK4(8n*38:+ 1) = 1
23

YKs(ﬁo*,ﬁ*) =1 YK4(8o*s81*sd1>do) =d — dy (26)
where, the symbols which have two definitions for m # 0; that
iS, 2 and Ym in (4); Am il’l (5), Dm in (8)’ MKl(gn*a8:+ lydmdn—hym)
in (13)’ MK2(£n*,£:+1’dmdn—1’ym) in (14)9 YKl(GO*’si*idladO,ym)
in (15), and YK,(go*,8,*,d;.ds,vm) in (16) are selected for the
eight cases as shown in Table I, respectively.

Using this general form, we can derive the Green’s functions
shown by Gish and Graham [2] and by Yamashita and Atsuki
31, [4].

Furthermore, we can easily show that these Green’s functions
satisfy the following reciprocity relation:

G(xi:yi;xjyj) = G(xj,J’_i;xu.}’i)- @7

The approximate Green’s function for a case of open microstrip
line can be derived from the Green’s function for case 1 by
letting both MK,(n) and MK,(n) for case 1 in Table I be
exp (—ymd,_,) and letting the sideward dimension a be large.
Then, although the parameters for such a case can be obtained
by the variational technique [2}-[4] using that Green’s func-
tion, there is the undesirable property that the infinite series
converge slowly when the sideward dimension is large.

REFERENCES

[1] P. Silvester, “TEM wave properties of microstrip transmission lines,”
Proc. IEE (London), vol. 115, pp. 43-48, Jan, 1968.

[2] D. L. Gish and O. Graham, *“Characteristic impedance and phase
velocity of a dielectric-supported air strip transmission line with side
walls,” IEEE Trans. Microwave Theory Tech., vol. MTT-18, pp.
131-148, March 1970.

3] E. Yamashita and K. Atsuki, “Strip line with rectangular outer con-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, SEPTEMBER 1976

ductor and three dielectric layers,” IEEE Trans. Microwave Theory
Tech., vol. MTT-18, pp. 238-244, May 1970.
, “Analysis of thick-strip transmission lines,” IEEE Trans. Micro-

[4]
wave Theory Tech. (Correspondence), vol. MTT-19, pp. 120-122,

an. .

[5] J. L. Allen, “Odd and even mode capacitances for coupled strips in a
layered medium,” Int. J. Electronics, vol. 35, pp. 1-13, Jan. 1973.

[6] 1. J. Albrey and M. W. Gunn, “Reduction of the attenuation constant
of microstrip,” IEEE Trans. Microwave Theory Tech. (Short Papers),
vol. MTT-22, pp. 739-742, July 1974.

[71 M. Kobayashi, “Green’s function in a region with inhomogeneous,
isotropic dielectric media,” IEEE Trans. Microwave Theory Tech.
(Short Papers), vol. MTT-23, pp. 760-762, Sept. 1975. .

81 {{961(3) Collin, Field Theory of Guided Waves. New York: McGraw-Hill,.

Comments on “Design Equations for an Interdigitated
Directional Coupler”

JOSEPH A. MOSKO

In the above short paper,! Ou derived some design equations
for interdigital couplers. The purpose of this letter is to point
out a limitation which may not be apparent upon reading the
above work.

Because of Ou’s simplifying assumptions, his method is not
as accurate as he indicates. Let’s consider the very popular
—3-dB coupler example he selected. Turning to carefully
plotted Bryant & Weiss data by Chambers [1, fig. 2], one can
see that although S/H agree quite well, there is an obvious
30-percent disagreement in the W/H values of theory versus
experiment [2], [3]. (Actually, Lange’s data are very impressive
—especially because he was announcing a new structure whose
dimensions were intuitively and experimentally derived.)

Perhaps some will think that this letter is nit-picking. How-
ever, it can be shown by more rigorous theory than Ou used
that “significant” strip-width errors can lead to couplers with
poor isolation. Because the sources for poor isolation are many
(uneven mode velocities in coupled microstrips, tolerances, con-
nectors, wire bonds, etc.), the contributions of a linewidth error
may not be obvious. If the primary error of the approximate
method were in gap width, this letter would not be necessary
because an error in coupling would be more apparent and the
fix is obvious.
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Correction to “Analysis of Microstrip-Like Transmission
Lines by Nonuniform Discretization of Integral Equations”

EIKICHI YAMASHITA

In the above paper,! on page 195, the last line of the
Abstract, and on page 198, line 4 of Section V, the abbrevi-
ation LSM was erroneously said to represent “linear synchro-
nous motor.” The correct meaning is *longitudinal-section
magnetic modes.”
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